125 Series Standard Conveyors

Specifications

• Width 2” to 24”
• Length 24” to 144”
• Profile 1.89” high
• Drive Pulley 1.31” Diameter
• Load Carrying Capacity to 450 lbs.*
• Speed Range up to 225 fpm

*See Technical Data on page 10

Overview Dimensions

Note: As in all industries, technical specifications will change with technology updates. Please contact factory or see www.qcindustries.com for the most up-to-date drawings.

*Dimension reflects use of MAA belt. See pages 20-21.
Features & Benefits

Conveyor

- **Low profile design** provides tight product transfers and the ability to fit into space-constrained areas.
- Single piece 10-gauge steel framework is laser cut and formed to create a **single-body frame construction**, ensuring frame integrity.
- **Tight tolerance belting** and our unique snap-out sealed tail assembly provide for a **quick belt change** (less than 5 minutes) that is normally achieved without having to remove the drive packages or side rails.
- **High tensile strength belts** offer superior strength-to-weight ratio and are available in over 50 various types.
- All components in our conveyors are produced on **state-of-the-art manufacturing equipment**.

Tail Assembly

- **Single point belt tension** is achieved through a **snap-in eccentric tail assembly** designed to pull through the natural elongation characteristics of the belt and provide quick and easy belt change capacity.
- **Crowned sealed tail assembly** is designed to promote excellent belt tracking and is equipped with **superior needle bearings with seals** that are filled with high performance grease.
- **Thrust washers** designed into the tail assembly provide axial float, which allows the assembly to move with the natural camber of the belt and **protect bearings against off-center load conditions**.
- Grease fitting design in the tail assembly allows for lubrication of bearings while the conveyor is running, resulting in **zero down time during lubrication**.
- **Precision bearing alignment** is guaranteed within the pressed tail assembly, providing optimal conditions to **move the heaviest loads** in low profile conveyors.
- Eccentric tracking bushing allows for **single point tracking control** at the idler end of the conveyor.

Drive Assembly

- **Straight knurl design used to prevent premature wear** on the carcass of the belt and still provide superior grip to overcome start-up inertia.
- **Crowned sealed drive assembly** designed to promote superior belt tracking, and is equipped with **superior needle bearings with seals** that are filled with high performance grease.
- **Thrust washers** designed into the drive assembly provide axial float, which allows the assembly to move with the natural camber of the belt and **protect bearings against off-center load conditions**.
- Discreet needle fitting lubrication points in each bearing housing allows for lubrication of bearings while the conveyor is running, resulting in **zero down time during lubrication**.
- **Precision bearing alignment** is guaranteed within the pressed bearing assemblies that are piloted on body fitted studs, providing optimal conditions to **move the heaviest loads** in low profile conveyors.
- **Threaded tracking adjustment points** provide simple responsive belt tracking that retain settings, even during belt removal.
- Drive pulley is available in **solid output design, dual solid output design**, or **hex through shaft design**.
Each of the myriad of applications that exist requires certain performance characteristics from the conveyor. QC Industries has developed a sizing system that condenses all of these parameters into a common factor, namely equivalent load.

A conveyor application that is accumulating a 5-pound load, for example, demands the conveyor to carry more than 5 pounds. As such, we have developed certain factors to add to the load that the conveyor needs to carry.

Follow the five steps below to determine the equivalent load your application requires. The result will then be used to help choose the gearmotor arrangement that will provide the correct torque.

1. Nominal Load

Enter the total load in pounds the conveyor must carry. For example, (12) cartons weighing 10 pounds each would have a total nominal load of 120 lbs. Use Figure 10-A to cross-reference the width conveyor you desire with the nominal load you need to carry (to ensure it can carry the load). Each conveyor width listed shows a total load carrying capacity for both drive pushing and drive pulling applications. Enter nominal load (in pounds) on Line One.

2. Accumulation

If the application does not have an accumulating load, enter zero on Line Two. Otherwise, multiply the nominal load from Line One times an accumulation factor. (0.2 for accumulation belts listed on page 20 and 0.3 for MAA standard urethane). Enter result on Line Two.

3. Incline/Decline

Some applications require an incline or decline. If the application does not require an incline or decline, enter zero on Line Three. For inclining or declining applications, choose a factor from Figure 10-B based upon the angle of incline then multiply that factor by the total nominal load from Line One. Enter result on Line Three.

4. Side Seals

If the application does not call for side rails with seals to prevent small parts from getting under the rail, enter zero on Line Four. Otherwise, multiply the conveyor length in feet by 5. The side rails can be found on page 22. Example: 96” long conveyor with side seals would have a factor of 40 (8 x 5). Enter result on Line Four.

5. Conveyor Friction

All conveyors have a certain amount of friction that must be added to the nominal load. To determine how much additional load must be factored in, add 4 to the conveyor width in inches, then multiply by 6, or simply choose the value from Figure 10-C. Enter result on Line Five.

Verify Load Capacity:

After adding lines one through four together, please reference Figure 10-A to ensure that the conveyor width you desire will carry the sum of Lines One through Four. If the sum is greater than the load capacity listed for the width you have chosen, please choose a wider conveyor or consult factory.

Equivalent Load (lbs) SUM (1-5) _________ lbs.

Write down the equivalent load on your application assistance form (pages 116-117). The equivalent load will be needed to properly size a gearmotor for the conveyor. (See pages 30-37)

Next, proceed to the next page to construct the conveyor part number.
How to Order

Step 1

<table>
<thead>
<tr>
<th>Series</th>
<th>Drive Type</th>
<th>Construction</th>
<th>Frame</th>
<th>Frame Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = 125</td>
<td>E = End Drive</td>
<td>S = Standard</td>
<td>B = 1.81" Powder Coat (Beige)</td>
<td>H = Straight Frame</td>
</tr>
<tr>
<td></td>
<td>E = 1.81" Stainless Steel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 2

<table>
<thead>
<tr>
<th>Widths</th>
<th>Lengths*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"</td>
<td>24"</td>
</tr>
<tr>
<td>3"</td>
<td>024</td>
</tr>
<tr>
<td>4"</td>
<td>036</td>
</tr>
<tr>
<td>6"</td>
<td>048</td>
</tr>
<tr>
<td>8"</td>
<td>060</td>
</tr>
<tr>
<td>10"</td>
<td>072</td>
</tr>
<tr>
<td>12"</td>
<td>096</td>
</tr>
<tr>
<td>18"</td>
<td>120</td>
</tr>
<tr>
<td>24"</td>
<td>144</td>
</tr>
</tbody>
</table>

*Contact factory for special lengths

Step 3

<table>
<thead>
<tr>
<th>Drive Location</th>
<th>Drive Pulley Type</th>
<th>Tail Pulley Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Standard S</td>
<td>Q</td>
</tr>
<tr>
<td>D</td>
<td>1/2" Hex Thru Cap</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1/2" Hex Thru Cap</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1/2" Dia* Solid Output Shaft</td>
<td></td>
</tr>
<tr>
<td>A&B are drive pulling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C&D are drive pushing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard H</td>
<td>Rolling Nosebar R</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1/2" Dia*</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Dual Output D</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Detectable D</td>
<td></td>
</tr>
</tbody>
</table>

Step 4

Choose three-digit belt ordering code on pages 20-21.

Example: 1ESBH02-048-ASQ-MAA

125 Series conveyor with standard construction and 1.81" powder coated frame. Conveyor measures 2" wide by 48" long with solid output pulley and standard tail pulley. The drive output shaft is in the A position. The conveyor has a standard urethane belt.

Optional: Snap-In Wiper is used with smooth surfaced, low friction belts for residue removal. This item snaps into the underside of the conveyor frame and can be installed at either end of the conveyor. Shown here on the drive end.

To Order:
Fill in the last two digits of the part number with the conveyor width
Part Number: 125-0192-WW
Example: 125-0192-08
Snap-In Wiper for an 8" wide conveyor

As standard, we assemble the conveyor, track the pre-tensioned belt and quality check every conveyor before we ship to the customer. Accessories such as Drives, Stands, Mounts, and Guides are packaged separately and are shipped unassembled with the conveyor to prevent damage during shipment. Complete assembly can be provided upon request; please contact our factory for details.

Note: proceed to page 22 to continue sizing your conveyor...
Specifications

- Width 2” to 24”
- Length 24” to 144”
- Profile 1.89” high
- Drive Pulley 1.31” Diameter
- Load Carrying Capacity to 450 lbs.*
- Speed Range up to 225 fpm
- Multiple Cleat Heights Available

*See Technical Data on page 14

Overview Dimensions

Note: As in all industries, technical specifications will change with technology updates. Please contact factory or see www.qcindustries.com for the most up-to-date drawings.
Features & Benefits

Conveyor

- **Low profile design** provides tight product transfers and the ability to fit into space-constrained areas.
- Single piece 10-gauge steel framework is laser cut and formed to create a single-body frame construction, ensuring frame integrity.
- **Tight tolerance belting** and our unique snap-out sealed tail assembly provide for a quick belt change (less than 5 minutes) that is normally achieved without having to remove the drive packages or side rails.
- **High tensile strength cleated belts** offer superior strength-to-weight ratio and are available in various styles and heights. Cleats are always high frequency welded to customer desired spacing and never glued to the top surface of the belt.
- All components in our conveyors are produced on state-of-the-art manufacturing equipment.

Tail Assembly

- **Single point belt tension** is achieved through a snap-in eccentric tail assembly designed to pull through the natural elongation characteristics of the belt and provide quick and easy belt change capacity.
- **Crowned sealed tail assembly** is designed to promote excellent belt tracking and is equipped with superior needle bearings with seals that are filled with high performance grease.
- **Thrust washers** designed into the tail assembly provide axial float, which allows the assembly to move with the natural camber of the belt and protect bearings against off-center load conditions.
- Grease fitting design in the tail assembly allows for lubrication of bearings while the conveyor is running, resulting in zero down time during lubrication.
- **Precision bearing alignment** is guaranteed within the pressed tail assembly, providing optimal conditions to move the heaviest loads in low profile conveyors.
- Eccentric tracking bushing allows for single point tracking control at the idler end of the conveyor.

Drive Assembly

- **Straight knurl design used to prevent premature wear** on the carcass of the belt and still provide superior grip to overcome start-up inertia.
- **Crowned sealed drive assembly** designed to promote superior belt tracking, and is equipped with superior needle bearings with seals that are filled with high performance grease.
- **Thrust washers** designed into the drive assembly provide axial float, which allows the assembly to move with the natural camber of the belt and protect bearings against off-center load conditions.
- Discreet needle fitting lubrication points in each bearing housing allows for lubrication of bearings while the conveyor is running, resulting in zero down time during lubrication.
- **Precision bearing alignment** is guaranteed within the pressed bearing assemblies that are piloted on body fitted studs, providing optimal conditions to move the heaviest loads in low profile conveyors.
- **Threaded tracking adjustment points** provide simple responsive belt tracking that retain settings, even during belt removal.
- Drive pulley is available in solid output design, dual solid output design, or hex through shaft design.
Each of the myriad of applications that exist requires certain performance characteristics from the conveyor. QC Industries has developed a sizing system that condenses all of these parameters into a common factor, namely equivalent load.

A conveyor application that is carrying a 5-pound load, for example, demands the conveyor to carry more than 5 pounds. As such, we have developed certain factors to add to the load that the conveyor needs to carry.

Follow the three steps below to determine the equivalent load your application requires. The result will then be used to help choose the gearmotor arrangement that will provide the correct torque.

1. **Nominal Load**

 Enter the total load in pounds the conveyor must carry. For example, (12) cartons weighing 10 pounds each would have a total nominal load of 120 lbs.

 Verify Load Capacity:

 After adding lines One and Two together, please reference Figure 14-A to cross-reference the width conveyor you desire with the nominal load you need to carry (to ensure it can carry the load). Each conveyor width listed shows a total load carrying capacity for both drive pushing and drive pulling applications. Enter nominal load (in pounds) on Line One.

2. **Incline/Decline [Factor] x [Load] =**

 Some applications require an incline or decline. If the application does not require an incline or decline, enter zero on Line Two. For inclining or declining applications, choose a factor from Figure 14-B based upon the angle of incline then multiply that factor by the total nominal load from Line One.

 Enter result on Line Two.

3. **Conveyor Friction**

 All conveyors have a certain amount of friction that must be added to the nominal load. To determine how much additional load must be factored in, add 4 to the conveyor width in inches, then multiply by 6, or simply choose the value from Figure 14-C.

 Enter result on Line Three.

Equivalent Load (lbs) SUM (1-3) _________ lbs.

Write down the equivalent load on your application assistance form (pages 116-117). The equivalent load will be needed to properly size a gearmotor for the conveyor. (See pages 30-37)

Next, proceed to the next page to construct the conveyor part number.
How to Order

Step 1

<table>
<thead>
<tr>
<th>Series</th>
<th>Drive Type</th>
<th>Construction</th>
<th>Frame</th>
<th>Frame Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = 125</td>
<td>E = End Drive</td>
<td>S = Standard</td>
<td>B = 1.81” Powder Coat (Beige) E = 1.81” Stainless Steel</td>
<td>H = Straight Frame</td>
</tr>
</tbody>
</table>

Custom colors available - Contact factory.

Step 2

<table>
<thead>
<tr>
<th>Widths</th>
<th>Lengths*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2” 3” 4” 6” 8” 10” 12” 18” 24”</td>
<td>24” 36” 48” 60” 72” 96” 120” 144”</td>
</tr>
<tr>
<td>02 03 04 06 08 10 12 18 24</td>
<td>024 036 048 060 072 096 120 144</td>
</tr>
</tbody>
</table>

*Contact factory for special lengths

Step 3

<table>
<thead>
<tr>
<th>Drive Location</th>
<th>Drive Pulley Type</th>
<th>Tail Pulley Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>C D</td>
<td>Cap Solid Output Shaft 1/2” Dia*</td>
<td>S Standard</td>
</tr>
<tr>
<td>A B</td>
<td>Thru Hex Input 1/2” Dia*</td>
<td>H Detectable</td>
</tr>
<tr>
<td>A B</td>
<td>1/2” Dia* Dual Output</td>
<td>D Detectable</td>
</tr>
</tbody>
</table>

* 1/8” sq. key included

Step 4

Choose a base belt material and cleat height

<table>
<thead>
<tr>
<th>Base Belt Material</th>
<th>5mm</th>
<th>19mm</th>
<th>1/2”</th>
<th>3/4”</th>
<th>1” w/ corr. sides</th>
<th>1”</th>
<th>2”</th>
<th>3”</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAA (Standard Urethane)</td>
<td>CAB</td>
<td>CAD</td>
<td>CAE</td>
<td>CAF</td>
<td>CAG</td>
<td>CAI</td>
<td>CAK</td>
<td></td>
</tr>
<tr>
<td>UAC (White Urethane)</td>
<td>CBB</td>
<td>CBD</td>
<td>CBE</td>
<td>CBF</td>
<td>CBG</td>
<td>CBI</td>
<td>CBK</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: All belts must have a cleat indent of width minus 1.37”, except 1” cleats with corrugated sidewall. That cleat indent is width minus 3.62”

Note 2: Cleated belts are intended for use in conjunction with indented or adjustable guides (see page 23)

Step 5

Determine the total number of cleats on the conveyor. Multiply conveyor length (in inches) by 2, divide by the desired spacing between the cleats (in inches). This will result in the total number of cleats evenly spaced around the circumference of the belt. Note: Must have a whole number of cleats.

Example: 1ESBH06-048-ASQ-CAE016

125 Series conveyor with standard construction and 1.81” powder coated frame. Conveyor measures 6” wide by 48” long with solid output pulley and standard tail pulley. The drive output shaft is in the A position. The conveyor belt has a 1/2” high cleat every 6”.

Note: proceed to page 22 to continue sizing your conveyor...
125 Series Magnetic Conveyors

Specifications

- Width 2” to 24”
- Length 24” to 144”
- Profile 1.89” high
- Drive Pulley 1.31” Diameter
- Load Carrying Capacity to 450 lbs.*
- Speed Range up to 225 fpm

*See Technical Data on page 18

Overview Dimensions

Note: As in all industries, technical specifications will change with technology updates. Please contact factory or see www.qcindustries.com for the most up-to-date drawings.

*Dimension reflects use of MAA belt. See pages 20-21.
Features & Benefits

Conveyor

- **Low profile design** provides tight product transfers and the ability to fit into space-constrained areas.
- Single piece 10-gauge stainless steel framework is laser cut and formed to create a single-body frame construction, ensuring frame integrity.
- **Tight tolerance belting** and our unique snap-out sealed tail assembly provide for a quick belt change (less than 5 minutes) that is normally achieved without having to remove the drive packages or side rails.
- **Ceramic magnets** are custom positioned within the conveyor framework to achieve an optimum magnetic field and smooth product movement for your application.
- **High tensile strength belts** offer superior strength-to-weight ratio and are available in over 50 various types.
- All components in our conveyors are produced on state-of-the-art manufacturing equipment.

Tail Assembly

- **Single point belt tension** is achieved through a snap-in eccentric tail assembly designed to pull through the natural elongation characteristics of the belt and provide quick and easy belt change capacity.
- **Crowned sealed tail assembly** is designed to promote excellent belt tracking and is equipped with superior needle bearings with seals that are filled with high performance grease.
- **Thrust washers** designed into the tail assembly provide axial float, which allows the assembly to move with the natural camber of the belt and protect bearings against off-center load conditions.
- Grease fitting design in the tail assembly allows for lubrication of bearings while the conveyor is running, resulting in zero down time during lubrication.
- **Precision bearing alignment** is guaranteed within the pressed tail assembly, providing optimal conditions to move the heaviest loads in low profile conveyors.
- Eccentric tracking bushing allows for single point tracking control at the idler end of the conveyor.

Drive Assembly

- **Straight knurl design used to prevent premature wear** on the carcass of the belt and still provide superior grip to overcome start-up inertia.
- **Crowned sealed drive assembly** designed to promote superior belt tracking, and is equipped with superior needle bearings with seals that are filled with high performance grease.
- **Thrust washers** designed into the drive assembly provide axial float, which allows the assembly to move with the natural camber of the belt and protect bearings against off-center load conditions.
- Discreet needle fitting lubrication points in each bearing housing allows for lubrication of bearings while the conveyor is running, resulting in zero down time during lubrication.
- **Precision bearing alignment** is guaranteed within the pressed bearing assemblies that are piloted on body fitted studs, providing optimal conditions to move the heaviest loads in low profile conveyors.
- **Threaded tracking adjustment points** provide simple responsive belt tracking that retain settings, even during belt removal.
- Drive pulley is available in solid output design, dual solid output design, or hex through shaft design.
Technical Data

Each of the myriad of applications that exist requires certain performance characteristics from the conveyor. QC Industries has developed a sizing system that condenses all of these parameters into a common factor, namely equivalent load.

A conveyor application that is carrying a 5-pound load, for example, demands the conveyor to carry more than 5 pounds. As such, we have developed certain factors to add to the load that the conveyor needs to carry.

Follow the five steps below to determine the equivalent load your application requires. The result will then be used to help choose the gearmotor arrangement that will provide the correct torque.

1. Nominal Load

 Enter the total load in pounds the conveyor must carry. For example, (12) metal parts weighing 10 pounds each would have a total nominal load of 120 lbs. Use Figure 18-A to cross-reference the width conveyor you desire with the nominal load you need to carry (to ensure it can carry the load). Each conveyor width listed shows a total load carrying capacity for both drive pushing and drive pulling applications. Enter nominal load (in pounds) on Line One.

2. Magnetic Factor

 To achieve magnetic pull, there are rows of magnets down the length of the conveyor. The maximum number of rows can be determined by dividing the conveyor width by two (not to exceed eight rows). Choose the number of magnet rows and then multiply the load by the factor from Figure 18-B. Enter result on Line Two.

3. Incline/Decline [Factor] x [Load] =

 Some applications require an incline or decline. If the application does not require an incline or decline, enter zero on Line Three. For inclining or declining applications, choose a factor from Figure 18-C based upon the angle of incline then multiply that factor by the total nominal load from Line One. Enter result on Line Three.

4. Side Seals

 If the application does not call for side rails with seals to prevent small parts from getting under the rail, enter zero on Line Four. Otherwise, multiply the conveyor length in feet by 5. The side rails can be found on page 22. Example: 96” long conveyor with side seals would have a factor of 40 (8 x 5). Enter result on Line Four.

Verify Load Capacity:
After adding lines one through four together, please reference Figure 18-A to ensure that the conveyor width you desire will carry the sum of Lines One through Four. If the sum is greater than the load capacity listed for the width you have chosen, please choose a wider conveyor or consult factory.

5. Conveyor Friction

 All conveyors have a certain amount of friction that must be added to the nominal load. To determine how much additional load must be factored in, add 4 to the conveyor width in inches, then multiply by 6, or simply choose the value from Figure 18-D. Enter result on Line Five.

 Equivalent Load (lbs) SUM (1-5) ______ lbs.

Write down the equivalent load on your application assistance form (pages 116-117). The equivalent load will be needed to properly size a gearmotor for the conveyor. (See pages 30-37)

Next, proceed to the next page to construct the conveyor part number.

Load Carrying Capacity - Figure 14-A

<table>
<thead>
<tr>
<th>Belt Width</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>lbs.</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1.5</td>
<td>1</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Pulling (Drive Location A&B) Pushing (Drive Location C&D)

Note: See page 19
Above load carrying capacities are for both drive pushing and pulling applications. Note: for drive pushing applications, decrease load capacity of conveyor by 1/2.

Magnetic Load Factors - Figure 18-B

<table>
<thead>
<tr>
<th>Number of Magnet Rows</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalent Load Constant</td>
<td>0.01</td>
<td>0.08</td>
<td>0.16</td>
<td>0.23</td>
<td>0.30</td>
<td>0.39</td>
<td>0.46</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Incline/Decline Load Factors - Figure 18-C

<table>
<thead>
<tr>
<th>Angle</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td>0.6</td>
<td>1.1</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.1</td>
<td>2.3</td>
<td>2.5</td>
<td>2.8</td>
<td>3.0</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conveyor Friction - Figure 18-D

<table>
<thead>
<tr>
<th>Frictional Load</th>
<th>36</th>
<th>42</th>
<th>48</th>
<th>60</th>
<th>72</th>
<th>84</th>
<th>96</th>
<th>132</th>
<th>168</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalent Load</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td>450</td>
</tr>
</tbody>
</table>

QC Industries 513.753.6000
How to Order

Step 1

<table>
<thead>
<tr>
<th>Series</th>
<th>Drive Type</th>
<th>Construction</th>
<th>Frame</th>
<th>Frame Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = 125</td>
<td>E = End Drive</td>
<td>M = Magnetic</td>
<td>E = 1.81” Stainless Steel</td>
<td>H = Straight Frame</td>
</tr>
</tbody>
</table>

Step 2

<table>
<thead>
<tr>
<th>Widths</th>
<th>Lengths*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2”</td>
<td>24”</td>
</tr>
<tr>
<td>3”</td>
<td>024</td>
</tr>
<tr>
<td>4”</td>
<td>036</td>
</tr>
<tr>
<td>6”</td>
<td>048</td>
</tr>
<tr>
<td>8”</td>
<td>060</td>
</tr>
<tr>
<td>10”</td>
<td>072</td>
</tr>
<tr>
<td>12”</td>
<td>096</td>
</tr>
<tr>
<td>18”</td>
<td>120</td>
</tr>
<tr>
<td>24”</td>
<td>144</td>
</tr>
</tbody>
</table>

*Contact factory for special lengths

Step 3

<table>
<thead>
<tr>
<th>C</th>
<th>Drive Pulley Type</th>
<th>D</th>
<th>Tail Pulley Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&B are drive pulling</td>
<td>Cap</td>
<td>Standard</td>
<td>Q</td>
</tr>
<tr>
<td>C&D are drive pushing</td>
<td>Solid Output Shaft</td>
<td>Standard</td>
<td>D</td>
</tr>
<tr>
<td>Thru</td>
<td>1/2” Dia*</td>
<td>Oval</td>
<td>Detectable</td>
</tr>
<tr>
<td>Hex Input</td>
<td>1/2” Hex</td>
<td>Oval</td>
<td>Detectable</td>
</tr>
<tr>
<td>1/2” Dia*</td>
<td>Dual Output</td>
<td>Oval</td>
<td>Detectable</td>
</tr>
</tbody>
</table>

* 1/8” sq. key included

Step 4

Choose three-digit belt ordering code on page 20 and 21.

Step 5

Please send the part to be conveyed to our Sales Department to evaluate for proper magnetic arrangement. Ceramic magnets are positioned in a stainless steel frame according to each application. This permits a wide variety of magnetic field strengths and location options. Our application specialists will complete the part number for you. Below is an illustration of how we document the magnet spacing.

1. Number of rows
2. Distance from tail before magnetic field begins
3. Number of magnet sections from tail
4. Row Spacing

As standard, we assemble the conveyor, track the pre-tensioned belt and quality check every conveyor before we ship to the customer. Accessories such as Drives, Stands, Mounts, and Guides are packaged separately and are shipped unassembled with the conveyor to prevent damage during shipment. Complete assembly can be provided upon request; please contact our factory for details.

Note: proceed to page 22 to continue sizing your conveyor...
Multi-Purpose Belts

<table>
<thead>
<tr>
<th>Belt Ordering Code</th>
<th>Top Surface Description</th>
<th>Top Surface Material</th>
<th>Belt Color</th>
<th>FDA</th>
<th>Topside Coefficient of Friction (CoF)</th>
<th>Short Term Part Max Temperature (°F)</th>
<th>Max Ambient Operating Temperature (°F)</th>
<th>Anti-Static</th>
<th>Average Belt Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Standard Urethane</td>
<td>Smooth</td>
<td>Urethane</td>
<td>White</td>
<td>YES</td>
<td>LOW</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.075</td>
</tr>
<tr>
<td>B. Option #1-Sealed Edge Urethane</td>
<td>Smooth, Sealed Edge</td>
<td>Urethane</td>
<td>White</td>
<td>YES</td>
<td>LOW</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.075</td>
</tr>
<tr>
<td>C. Option #2-Punched Edge Urethane</td>
<td>Smooth, Perforated</td>
<td>Urethane</td>
<td>White</td>
<td>YES</td>
<td>LOW</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.075</td>
</tr>
<tr>
<td>D. Option #3-Perforated Belt</td>
<td>Smooth</td>
<td>Urethane</td>
<td>White</td>
<td>YES</td>
<td>LOW</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.075</td>
</tr>
</tbody>
</table>

High Friction Belts

<table>
<thead>
<tr>
<th>Belt Ordering Code</th>
<th>Top Surface Description</th>
<th>Top Surface Material</th>
<th>Belt Color</th>
<th>FDA</th>
<th>Topside Coefficient of Friction (CoF)</th>
<th>Short Term Part Max Temperature (°F)</th>
<th>Max Ambient Operating Temperature (°F)</th>
<th>Anti-Static</th>
<th>Average Belt Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Grey Diamond Top High Adhesion</td>
<td>Snakeskin</td>
<td>PVC</td>
<td>Light Grey</td>
<td>NO</td>
<td>HIGH</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.103</td>
</tr>
<tr>
<td>B. Blue Nitrile Heat Resistor</td>
<td>Matte</td>
<td>PVC Soft</td>
<td>Dark Green</td>
<td>NO</td>
<td>HIGH</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.103</td>
</tr>
<tr>
<td>C. Black Silicone Heat Resistor</td>
<td>Smooth</td>
<td>Silicone</td>
<td>Beige</td>
<td>YES</td>
<td>HIGH</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.075</td>
</tr>
<tr>
<td>D. Black Nitrile Heat Resistor</td>
<td>Rough Top</td>
<td>PVC</td>
<td>Black</td>
<td>NO</td>
<td>HIGH</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.075</td>
</tr>
</tbody>
</table>

Accumulation Belts (Low Friction)

<table>
<thead>
<tr>
<th>Belt Ordering Code</th>
<th>Top Surface Description</th>
<th>Top Surface Material</th>
<th>Belt Color</th>
<th>FDA</th>
<th>Topside Coefficient of Friction (CoF)</th>
<th>Short Term Part Max Temperature (°F)</th>
<th>Max Ambient Operating Temperature (°F)</th>
<th>Anti-Static</th>
<th>Average Belt Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. FDA Fabric Accumulator</td>
<td>Fabric</td>
<td>Urethane</td>
<td>Black</td>
<td>YES</td>
<td>VERY LOW</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.054</td>
</tr>
<tr>
<td>B. Black Tight Weave Accumulator</td>
<td>Fabric</td>
<td>Urethane Impregnated</td>
<td>Light Grey</td>
<td>NO</td>
<td>VERY LOW</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.054</td>
</tr>
<tr>
<td>C. Grey Textured Urethane Accumulator</td>
<td>Fabric</td>
<td>Urethane Impregnated</td>
<td>Dark Green</td>
<td>NO</td>
<td>VERY LOW</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.054</td>
</tr>
<tr>
<td>E. FDA Fabric Accumulator</td>
<td>Fabric</td>
<td>Urethane</td>
<td>Black</td>
<td>NO</td>
<td>VERY LOW</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.054</td>
</tr>
</tbody>
</table>

Heat-Resistant Belts

<table>
<thead>
<tr>
<th>Belt Ordering Code</th>
<th>Top Surface Description</th>
<th>Top Surface Material</th>
<th>Belt Color</th>
<th>FDA</th>
<th>Topside Coefficient of Friction (CoF)</th>
<th>Short Term Part Max Temperature (°F)</th>
<th>Max Ambient Operating Temperature (°F)</th>
<th>Anti-Static</th>
<th>Average Belt Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Yellow Cut-Resistant</td>
<td>Smooth</td>
<td>Urethane</td>
<td>Yellow</td>
<td>NO</td>
<td>LOW</td>
<td>230</td>
<td>194</td>
<td>YES</td>
<td>0.080</td>
</tr>
<tr>
<td>B. Standard Urethane</td>
<td>Dimple Top</td>
<td>Urethane</td>
<td>Black</td>
<td>NO</td>
<td>HIGH</td>
<td>248</td>
<td>212</td>
<td>YES</td>
<td>0.075</td>
</tr>
<tr>
<td>C. Black Dimple Top Cut Resistor</td>
<td>Structured</td>
<td>Nitrile Rubber</td>
<td>Black</td>
<td>NO</td>
<td>MED</td>
<td>176</td>
<td>176</td>
<td>YES</td>
<td>0.100</td>
</tr>
</tbody>
</table>

FDA Belts

<table>
<thead>
<tr>
<th>Belt Ordering Code</th>
<th>Top Surface Description</th>
<th>Top Surface Material</th>
<th>Belt Color</th>
<th>FDA</th>
<th>Topside Coefficient of Friction (CoF)</th>
<th>Short Term Part Max Temperature (°F)</th>
<th>Max Ambient Operating Temperature (°F)</th>
<th>Anti-Static</th>
<th>Average Belt Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Standard Urethane</td>
<td>Smooth</td>
<td>Urethane</td>
<td>White</td>
<td>YES</td>
<td>LOW</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.075</td>
</tr>
<tr>
<td>B. Sealed Edge Urethane</td>
<td>Smooth, Sealed Edge</td>
<td>Urethane</td>
<td>White</td>
<td>YES</td>
<td>LOW</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.075</td>
</tr>
<tr>
<td>C. Pure White FDA</td>
<td>Matte</td>
<td>Urethane</td>
<td>White</td>
<td>YES</td>
<td>MED</td>
<td>300</td>
<td>212</td>
<td>YES</td>
<td>0.075</td>
</tr>
<tr>
<td>D. Woven White FDA</td>
<td>Smooth</td>
<td>Urethane</td>
<td>White</td>
<td>YES</td>
<td>MED</td>
<td>300</td>
<td>212</td>
<td>YES</td>
<td>0.075</td>
</tr>
<tr>
<td>E. FDA Urethane High Adhesion</td>
<td>Smooth</td>
<td>Urethane</td>
<td>White</td>
<td>YES</td>
<td>MED</td>
<td>300</td>
<td>212</td>
<td>YES</td>
<td>0.075</td>
</tr>
</tbody>
</table>

Static Conductive Belts

<table>
<thead>
<tr>
<th>Belt Ordering Code</th>
<th>Top Surface Description</th>
<th>Top Surface Material</th>
<th>Belt Color</th>
<th>FDA</th>
<th>Topside Coefficient of Friction (CoF)</th>
<th>Short Term Part Max Temperature (°F)</th>
<th>Max Ambient Operating Temperature (°F)</th>
<th>Anti-Static</th>
<th>Average Belt Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Textured Carbon Impregnated</td>
<td>Fabric</td>
<td>Urethane Impregnated</td>
<td>Black</td>
<td>NO</td>
<td>MED</td>
<td>212</td>
<td>176</td>
<td>NO</td>
<td>0.063</td>
</tr>
<tr>
<td>B. Accumulation Static Conductive</td>
<td>Rough Texture</td>
<td>Nitrile Rubber</td>
<td>Black</td>
<td>NO</td>
<td>MED</td>
<td>212</td>
<td>176</td>
<td>NO</td>
<td>0.063</td>
</tr>
<tr>
<td>C. Low Friction Static Conductive</td>
<td>Smooth</td>
<td>Urethane</td>
<td>Black</td>
<td>NO</td>
<td>MED</td>
<td>176</td>
<td>176</td>
<td>NO</td>
<td>0.063</td>
</tr>
</tbody>
</table>

Translucent Belts

<table>
<thead>
<tr>
<th>Belt Ordering Code</th>
<th>Top Surface Description</th>
<th>Top Surface Material</th>
<th>Belt Color</th>
<th>FDA</th>
<th>Topside Coefficient of Friction (CoF)</th>
<th>Short Term Part Max Temperature (°F)</th>
<th>Max Ambient Operating Temperature (°F)</th>
<th>Anti-Static</th>
<th>Average Belt Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Green Translucent Accumulator</td>
<td>Textured</td>
<td>Impregnated PU</td>
<td>Light Green</td>
<td>YES</td>
<td>VERY LOW</td>
<td>175</td>
<td>175</td>
<td>NO</td>
<td>0.023</td>
</tr>
<tr>
<td>B. FDA Fabric Translucent Accumulator</td>
<td>Fabric</td>
<td>Urethane Impregnated</td>
<td>Silicone</td>
<td>YES</td>
<td>VERY LOW</td>
<td>175</td>
<td>175</td>
<td>NO</td>
<td>0.023</td>
</tr>
<tr>
<td>C. Silicone Translucent Accumulator</td>
<td>Textured</td>
<td>Silicone</td>
<td>Silicone</td>
<td>YES</td>
<td>VERY LOW</td>
<td>175</td>
<td>175</td>
<td>NO</td>
<td>0.023</td>
</tr>
</tbody>
</table>

Color Contrasting Belts

<table>
<thead>
<tr>
<th>Belt Ordering Code</th>
<th>Top Surface Description</th>
<th>Top Surface Material</th>
<th>Belt Color</th>
<th>FDA</th>
<th>Topside Coefficient of Friction (CoF)</th>
<th>Short Term Part Max Temperature (°F)</th>
<th>Max Ambient Operating Temperature (°F)</th>
<th>Anti-Static</th>
<th>Average Belt Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Grey Textured Contraster</td>
<td>Fabric</td>
<td>PVC</td>
<td>Grey</td>
<td>NO</td>
<td>MED</td>
<td>158</td>
<td>158</td>
<td>YES</td>
<td>0.060</td>
</tr>
<tr>
<td>B. Smooth Green Urethane Contraster</td>
<td>Matte</td>
<td>Urethane</td>
<td>Green</td>
<td>YES</td>
<td>MED</td>
<td>176</td>
<td>176</td>
<td>YES</td>
<td>0.060</td>
</tr>
<tr>
<td>C. Dark Green PVC Contraster</td>
<td>Matte</td>
<td>Urethane</td>
<td>Green</td>
<td>YES</td>
<td>MED</td>
<td>176</td>
<td>176</td>
<td>YES</td>
<td>0.060</td>
</tr>
<tr>
<td>D. Light Blue Urethane Contraster</td>
<td>Matte</td>
<td>Urethane</td>
<td>Light Blue</td>
<td>YES</td>
<td>MED</td>
<td>176</td>
<td>176</td>
<td>YES</td>
<td>0.060</td>
</tr>
<tr>
<td>E. Smooth Black PVC Contraster</td>
<td>PVC</td>
<td>Urethane</td>
<td>Black</td>
<td>NO</td>
<td>NO</td>
<td>212</td>
<td>NO</td>
<td>NO</td>
<td>0.071</td>
</tr>
</tbody>
</table>

Release Properties Belts

<table>
<thead>
<tr>
<th>Belt Ordering Code</th>
<th>Top Surface Description</th>
<th>Top Surface Material</th>
<th>Belt Color</th>
<th>FDA</th>
<th>Topside Coefficient of Friction (CoF)</th>
<th>Short Term Part Max Temperature (°F)</th>
<th>Max Ambient Operating Temperature (°F)</th>
<th>Anti-Static</th>
<th>Average Belt Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Beige Silicone Product Release</td>
<td>Matte, Smooth</td>
<td>Silicone</td>
<td>Beige</td>
<td>YES</td>
<td>MED</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.072</td>
</tr>
<tr>
<td>B. White PVC Product Release</td>
<td>Matte, Smooth</td>
<td>Non-Stock PVC</td>
<td>White</td>
<td>YES</td>
<td>MED</td>
<td>194</td>
<td>158</td>
<td>YES</td>
<td>0.072</td>
</tr>
<tr>
<td>C. Textured Silicone Product Release</td>
<td>Fine Texture</td>
<td>Silicone</td>
<td>White</td>
<td>YES</td>
<td>MED</td>
<td>356</td>
<td>356</td>
<td>YES</td>
<td>0.059</td>
</tr>
<tr>
<td>D. Smooth Hable Filled Product Release</td>
<td>Smooth</td>
<td>Silicone</td>
<td>White</td>
<td>YES</td>
<td>MED</td>
<td>176</td>
<td>176</td>
<td>YES</td>
<td>0.059</td>
</tr>
<tr>
<td>E. Smooth Silicone Product Release</td>
<td>Textured</td>
<td>Silicone</td>
<td>White</td>
<td>YES</td>
<td>MED</td>
<td>176</td>
<td>176</td>
<td>YES</td>
<td>0.059</td>
</tr>
</tbody>
</table>

Specialty/Profile Belts

<table>
<thead>
<tr>
<th>Belt Ordering Code</th>
<th>Top Surface Description</th>
<th>Top Surface Material</th>
<th>Belt Color</th>
<th>FDA</th>
<th>Topside Coefficient of Friction (CoF)</th>
<th>Short Term Part Max Temperature (°F)</th>
<th>Max Ambient Operating Temperature (°F)</th>
<th>Anti-Static</th>
<th>Average Belt Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Green Sawtooth Profile Belt</td>
<td>Sawtooth</td>
<td>PVC</td>
<td>Green</td>
<td>NO</td>
<td>MED</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.177</td>
</tr>
<tr>
<td>B. White Grooved Rubber</td>
<td>Matte</td>
<td>Silicone</td>
<td>Beige</td>
<td>NO</td>
<td>MED</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.072</td>
</tr>
<tr>
<td>C. Stipple Top PVC Profile</td>
<td>Matte</td>
<td>PVC</td>
<td>White</td>
<td>YES</td>
<td>MED</td>
<td>212</td>
<td>176</td>
<td>YES</td>
<td>0.072</td>
</tr>
<tr>
<td>D. Negative Pyramid Profile</td>
<td>Textured</td>
<td>Urethane</td>
<td>Black</td>
<td>NO</td>
<td>NO</td>
<td>212</td>
<td>NO</td>
<td>NO</td>
<td>0.106</td>
</tr>
<tr>
<td>E. Green Longitudinal PVC Profile Belt</td>
<td>Textured</td>
<td>PVC</td>
<td>Green</td>
<td>NO</td>
<td>MED</td>
<td>172</td>
<td>172</td>
<td>YES</td>
<td>0.175</td>
</tr>
</tbody>
</table>

Chemical Resistant Belts

Due to the broad spectrum of chemicals and percentages of chemical mixtures, QC Industries offers belt selection assistance in chemical application circumstances. Our application specialists will help determine which belt is best suited to withstand the chemicals present as well as the entire scope of the application parameters. This approach delivers the best possible product for the application.

QC Industries
513.753.6000
Specifications subject to change - consult factory.
QC Industries offers conveyor belting for a wide variety of applications and industries. These pages cover a number of the more popular belts we have provided through the years. These belts have all been tested at QC industries and offer a compatible fit to the 125 Series conveyors. If you have a specific need that is not covered on these pages, please contact one of our sales engineers directly at the factory to discuss your application parameters.

To Order With Conveyor:
Please use the three-digit QC belt code number for conveyor ordering on pages 11, 15, and 19.

To Order Belt Only:
Choose nominal conveyor width and length in inches and enter the three-digit belt code.

Example: 1E-08-120-MAA
Standard urethane belt for an 8" wide by 120" long 125 Series conveyor

Multi-Purpose Belts

High-Friction Belts

Accumulation Belts (Low Friction)

Heat-Resistant Belts

Cut-Resistant Belts

FDA/USDA Belts

Static Conductive Belts

Translucent Belts

Color Contrasting Belts

Non-Marking Belts

Release Properties Belts

Specialty/Profile Belts

Chemical Resistant Belts

Due to the wide variety of chemical and percentages of chemical mixtures, QC Industries offers belt selection assistance in these application circumstances. Our application specialists will help determine which belt is best suited to withstand not only the chemicals present, but the entire scope of the application parameters. This approach delivers the best possible product for the application.
Fixed Side Rails

1/3” Side Rails

Part No. 125-0153-

To Order: Fill in the last three digits of the part number with the nominal conveyor length in inches. Ex. 125-0153-048

1” Side Rails

Part No. 125-0174-

To Order: Fill in the last three digits of the part number with the nominal conveyor length in inches. Ex. 125-0174-048

2” Side Rails

Part No. 125-0215-

To Order: Fill in the last three digits of the part number with the nominal conveyor length in inches. Ex. 125-0215-024

Note 1: W = nominal belt width in inches
Note 2: All rails are sold in sets
Note 3: Side rails start 1 11/16” from tail end and stop 3 1/2” from drive end

* Dimension reflects use of standard urethane belt (MAA) see page 20
** Side seals are not intended for cleated belts, high friction belts, or belt speeds exceeding 30 FPM

Custom fixed and flared side rails are available. For heights, consult factory.
Adjustable Guide Rails

2-Axis Adjustable Guides

To Order:
Fill in the last three digits of part number with the nominal length of the conveyor. Choose a set screw adjustment or a thumb wheel adjustment mechanism by indicating (S) for set screw and (T) for thumb wheel at the end of the part number.

Example 125-0281-120 -T
1" adjustable guide rail with wear strip and thumb wheel adjustment for a 120" long conveyor.

The 2-Axis Adjustable Guides are designed to guide the product being conveyed. The rails can adjust vertically and horizontally, offering the end user the ultimate in flexibility. Choose from a set screw or thumb wheel adjustment. The thumb wheel is shown in the above picture and is ideal for quick adjustments, because no tools are required.

Indented Guides

To Order:
Fill in the last three digits of part number with the nominal conveyor length in inches.

Example 125-0219-120
1" adjustable guide rail with wear strip for a 120" long conveyor.

The Indented Guides are designed to work with cleated belts. Each cleated belt is indented slightly (see page 15). The Indented Guide spans the indentation, providing a pocket which surrounds the product being conveyed.

*Dimension reflects use of MAA belt. See pages 20-21.
Tee Slotted Extrusions

Rotate-In Tee Nut

Part No. 125-0074-035 (Qty 1)
Part No. 125-0074-035-SET (Qty 4)

To Order:
Use part number 125-0074-035 (Qty. 1)
125-0074-035-SET (Qty. 4)

The Rotate-In Tee Nut is designed to hold lightweight brackets that have a thickness of .148" or under.

The Rotate-In Tee Nut can be used with the following rails and bolt on profiles:
1" - 125-0174, 125-0177, 125-0178
2" - 125-0215, 125-0217, 125-0216
Tee - 125-0225, 125-0199

Note:
The Rotate-In Tee Nut works with the 1" and 2" side rails shown on page 22, as well as the Single Tee Slot and the Multi Tee Slot extrusions shown below.

Multi Tee Slot

Part No. 125-0225-□□□

Single Tee Slot

Part No. 125-0199-□□□

To Order:
Fill in last three digits of part number with the nominal conveyor length in inches. Part number includes one set as shown in drawing.

Product Containment Accessories

Lane Dividers

For part number see below

To Order:
LD - □□□□□□□□□□□ (Example: LD-2-08144-12FS)
- 2" Lane Divider for 8" wide 144" long conveyor. One rail with two lanes mounted to the conveyor frame

Hinged Side Extenders

Shown with 1/3" side rail with seal

For part number see below

To Order:
Hinged Side Extenders bolt directly onto the frame of the conveyor, and can be used in conjunction with 1/3" side rails. Only available in 24" and 36" lengths.

Example
LD-2-08144-12FS
2" Lane Divider for 8" wide 144" long conveyor. One rail with two lanes mounted to the conveyor frame

Note:
To obtain a longer length of hinged side, please use combinations of 24" and 36" lengths. However, all length combinations must equal 1/2" less than the nominal conveyor length.

Dimension reflects use of MAA belt. See pages 20-21.
Flared Side Rails are ideal for applications that require a “drop zone” wider than the width of the conveyor. The rails attach to and require the use of the adjustable guide rails shown at the top of page 23. Additionally, the user can add other components (shown below) to help guide the product as needed. Note: Flared Side Rails should be ordered one size smaller than the nominal length of the conveyor.

To Order:

- Z-1004-012 12” length
- Z-1004-018 18” length
- Z-1004-024 24” length
- Z-1004-030 30” length
- Z-1004-036 36” length
- Z-1004-042 42” length
- Z-1004-048 48” length

Example: (1) Z-1004-036
A set of 36” long flared side rails

The rails are sold in sets and include mounting hardware
Note: Requires Part #125-0282-LLL-S shown on page 23

End Stops are used in conjunction with the Flared Side Rail. Stops are adjustable down the length of the rail. Note: End stops are available for the following width conveyors: 8”, 10”, 12”, 16”, and 24”.

To Order:

- 8” 125-0234-08
- 10” 125-0234-10
- 12” 125-0234-12
- 16” 125-0234-16
- 24” 125-0234-24

Example: (1) 125-0234-10
One end stop for a 10” wide conveyor equipped with flared side rails
Note: Designed to be compatible with 1” and 2” cleats. End stops are equipped with a swing gate to help contain product

The Adjustable Hopper is used in conjunction with the Flared Side Rail. The hopper is made from (2) end stops, which are adjustable down the length of the rail. Available for the following width conveyors: 8”, 10” 12”, 16”, and 24”.

To Order:

Please order a quantity of 2:

- 8” 125-0234-08
- 10” 125-0234-10
- 12” 125-0234-12
- 16” 125-0234-16
- 24” 125-0234-24

Example: (2) 125-0234-10
Two end stops for a 10” wide conveyor equipped with flared side rails
Note: Designed to be compatible with 1” and 2” cleats. End stops are equipped with a swing gate to help contain product

*Dimension reflects use of MAA belt. See pages 20-21.
Standard Mounts

125 Series

Mounts

Universal Adjustable Side Mount

![Image of Universal Adjustable Side Mount]

Notes:
Brackets are universal and can work on either side of the conveyor. Frame mounted brackets can only be used with 1” high or lower cleats. Tee Slot mounted brackets can only be used with 1/2” high or lower cleats.

To Order:
Frame Mounted version attaches directly to the conveyor frame. The frame has mounting holes every 3”.

The Tee Slot mounted version attaches to 1” side rails, 2” side rails, the single tee slot and the multi tee slot. See page 22 & 24.

- Part No. 125-0181-01 (Tee Slot)*
- Part No. 125-0181-04 (Frame)*
- Part No. 125-0181-05 (For use with multi-tier stand)*

Universal Raised Side Mount

![Image of Universal Raised Side Mount]

Notes:
Brackets are universal and can work on either side of the conveyor. Universal raised side mounts work with all cleat heights.

To Order:
Frame Mounted version attaches directly to the conveyor frame. The frame has mounting holes every 3”.

The Tee Slot mounted version attaches to 1” side rails, 2” side rails, the single tee slot and the multi tee slot. See page 22 & 24.

- Part No. 125-0182-01 (Tee Slot)*
- Part No. 125-0182-04 (Frame)*

Tee Mount

![Image of Tee Mount]

Notes:
Brackets are universal and can work on either side of the conveyor. Can also be used at tail end of conveyor in conjunction with drive end mounts (125-0014-00, 125-0013-00, 125-0015-00). Cannot be used with cleated belts.

To Order:
Attaches directly to the conveyor frame. The frame has mounting holes every 3”.

- Part No. 125-0010-00*

Universal Bottom Mount

![Image of Universal Bottom Mount]

Notes:
Bottom mount can attach conveyor to a horizontal or vertical surface. Cannot be used with high adhesion or cleated belts.

To Order:
Attaches directly to the underside of the conveyor frame. To order, use the part number below and fill in the nominal conveyor width in inches for the last two digits.

- Part No. 125-0011-WW *

Dimension reflects use of MAA belt. See pages 20-21.
Standard Mounts

To Order:
This mount uses existing through holes on the conveyor that are located 6.06” from the tail end and 8.5” or 14.5” from the drive end, depending on which gearmotor selection is chosen. This will mount the conveyor to a flat surface. To order, use the part number below and fill in the nominal conveyor width in inches for the last two digits.

Part No. 125-0116-WW*
Example: 125-0116-06*
Rod Clamp Mount for 6” wider conveyor

Notes:
Mounts cannot be used with Multi Tee or Single Tee Slotted Side Assembly.
Mounts cannot be used with cleated belts.

To Order:
These mounts are primarily intended to provide precise alignment when mounted to a common flat surface, or for multiple conveyors utilizing a common drive shaft. See gang drive page 41.

*This mount replaces either right hand or left hand mount and allows mounting of a side drive.

To Order:
For applications where rapid alignment and rigid mounting of conveyors is required. These clamp mounts provide an economical and practical approach to rapid bolster mounting of gang driven conveyors. See gang drives pg. 41.

*This mount replaces either right hand or left hand mount and allows mounting of a side drive.

To Order:
For applications where rapid alignment and rigid mounting of conveyors is required. These clamp mounts are ideal for quick die change systems since the conveyors can be installed into the dies prior to being inserted into the press. See gang drives pg. 41.

*This mount replaces either right hand or left hand mount and allows mounting of a side drive.

Notes:
Mounts can only be used with a side or remote drive.
Mounts cannot be used with cleated belts.

Notes:
Mounts can only be used with a side or remote drive.
Mounts cannot be used with cleated belts.

Notes:
Mounts can only be used with a side or remote drive.
Mounts cannot be used with cleated belts.

Notes:
Mounts can only be used with a side or remote drive.
Mounts cannot be used with cleated belts.

Notes:
Mounts can only be used with a side or remote drive. (fasteners included)

Notes:
Mounts cannot be used with Multi Tee or Single Tee Slotted Side Assembly. (fasteners not included)

Rod Clamp Mount

Drive End Mount

Self-Aligning Bottom Clamp Mount

Self-Aligning Top Clamp Mount

*Dimension reflects use of MAA belt. See pages 20-21.
Aluminum Exact Width Conveyor Stands

Stand Height Range: H1- H2 (in inches)

<table>
<thead>
<tr>
<th>Stand Widths-WW (nominal conveyor width in inches)</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>06</th>
<th>08</th>
<th>10</th>
<th>12</th>
<th>18</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 - H2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06 - 09</td>
<td>33</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 - 12</td>
<td>36</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 - 15</td>
<td>39</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 - 18</td>
<td>42</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 - 21</td>
<td>45</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 - 24</td>
<td>48</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 - 27</td>
<td>51</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 - 30</td>
<td>54</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 - 33</td>
<td>57</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To order:
- **Part No.** 0182 - H1 - H2 - WW

1) Choose height range from left and enter into H1 & H2 sections. Remember that the conveyor profile adds 1.89” to the height.
2) Enter conveyor width into WW section.

NOTE: There is a 3” overall height adjustment with feet

Example: 0182 - 30 - 33 - 24 (Part No. includes one stand)

Steel Telescoping Conveyor Stands

Stand Height Range: H1- H2 (in inches)

<table>
<thead>
<tr>
<th>Top Plate Widths - WW (in inches)</th>
<th>08</th>
<th>14</th>
<th>21</th>
<th>27</th>
</tr>
</thead>
</table>

To order:
- **Part No.** 0184 - H1 - H2 - WW

1) Choose height range from left and enter into H1 & H2 sections. Remember that the conveyor profile adds 1.89” to the height.
2) Enter top plate width into WW section.

NOTE: The conveyor profile adds 1.89” to the height.

Example: 0184 - 16 - 24 - 14 (Part No. includes one stand)

Steel Stands with Stabilizers

Stand Height Range: H1- H2 (in inches)

<table>
<thead>
<tr>
<th>Top Plate Widths - WW (in inches)</th>
<th>08</th>
<th>14</th>
<th>21</th>
<th>27</th>
</tr>
</thead>
</table>

To order:
- **Part No.** 0186 - H1 - H2 - WW

1) Choose height range from left and enter into H1 & H2 sections. Remember that the conveyor profile adds 1.89” to the height.
2) Choose top plate width into WW section.

NOTE: Must use Rod Clamp Mount 125-0016-WW (See page 27) to attach the conveyor to the stand.

Example: 0186 - 16 - 24 - 21 (Part No. includes one stand)

Aluminum Multiple Conveyor Stands

Stand Height Range: H1- H2 (in inches)

<table>
<thead>
<tr>
<th>Widths - WW* (in inches)</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>30</th>
<th>36</th>
</tr>
</thead>
</table>

To order:
- **Part No.** 0187 - H1 - H2 - WW

1) Choose height range from left and enter into H1 & H2 sections.
2) Choose stand width (WW) and enter into WW section.

NOTE: There is a 3” overall height adjustment with feet

Example: 0187 - 33 - 36 - 12 (Part No. includes one stand)

Note: All applications will require the end user to properly lag stands and ensure stability. Because every application and installation is different, the functionality and performance of the supports depend on the end user. QC Industries can aid in determining the supports your application requires.
Angle Brace

To order:
Part No. 125-0189-00
For use with aluminum stands only.
Angle brace can be used on a 125 Series conveyor with a minimum top of belt height of 28". The angle brace is designed for conveyors 5’ or longer. When used with casters, angle braces must be used on both stands. Part number denotes a set; order (1) per stand.

Aluminum Cross Ties

To order:
Part No. 125-0235-00
Enter length of cross ties needed into the "LLL" section above. A quantity of one includes (2) cross ties.
Note: Cross ties require customer to cut to length because of stand placement variations.
Example: 125-0235-120

Steel Cross Ties

To order:
Part No. 125-0236-00
Enter length of cross ties needed into the "LLL" section above. A quantity of one includes (2) cross ties.
Note: Cross ties require customer to cut to length because of stand placement variations.
Example: 125-0236-036

Casters

To order:
Part No. 125-0122-04
Swivel locking caster
Order (2) per stand
Casters can be added to either aluminum or steel stands. Swivel locking casters increase stand height by 5.50”. Casters should only be used with stands that are 1/3 as wide as they are tall.

Swivel-In Tee Nut

To order:
Part No.
125-0074-036 (Qty 1)
125-0074-036-SET (Qty 4)
The Swivel-In Tee Nut is ideal for mounting brackets to an aluminum stand, and allows quick mounting location changes.
1/4 - 20 thread in Tee-Nut is provided for attaching accessories.

NOTE: All applications will require the end user to properly lag stands and ensure stability. Because every application and installation is different, the functionality and performance of the supports depend on the end user. QC Industries can aid in determining the supports your application requires.
The equivalent load was determined in the conveyor technical data pages (pages 10, 14, and 18). To choose a gear motor combination that works best for the application, the next step is to convert that equivalent load into the torque required and size a drive based upon its use. The user must know the belt speed (in feet per minute) and service factor (determined below). The steps below guide the user through this process. These steps will ultimately compare the torque required to move the load on the conveyor (Required Conveyor Drive Torque) and the torque the drive train is capable of producing (Supplied Drive Train Torque).

1. Calculate Required Conveyor Drive Torque (RCDT)
 Enter the equivalent load the drive must handle (from pages 10, 14, or 18). Divide this number by 6. The result equals the torque required for the application, or the required conveyor drive torque (RCDT). Enter RCDT on Line One.

2. Select Belt Speed & Enter Drive Train Torque (DTT)
 Choose the belt speed from one of the following pages (33 or 37), and write down the drive train torque (DTT) for the selected speed. Please note that if you are choosing a top or bottom drive, you may use either a timing belt or a chain. For heavy duty drives (listed on page 37), the drive train torque is lower if using a timing belt. Enter the drive train torque on Line Two.

3. Select Service Class and Enter Service Factor (SF)
 Select a service class: Class I - Moderate loads with chain and sprocket or direct drive
 Class II - Moderate loads with timing belt and pulley
 Now select the service factor (SF) from Chart 30-A below based upon hours of operation per day and number of starts and stops per hour. Enter the result on Line Three.

4. Calculate Supplied Drive Train Torque (SDTT)
 Divide the drive train torque (DTT) from #2 by the service factor (SF) from #3. This result equals the supplied drive train torque (SDTT). Enter the result on Line Four.

5. Determine Functionality
 Compare Line 4 (the supplied drive train torque [SDTT]) to Line 1 (the required conveyor drive torque [RCDT]). If the SDTT is equal to or greater than RCDT, then you have selected the proper drive. SDTT > RCDT. If not, then:
 A) Slow down the belt speed
 B) Choose a wider conveyor
 C) Consult factory

Example:
Equivalent load = 100 (per conveyor technical data page)
100 / 6 = 17 (RCDT)
30 FPM (From page 33 - standard duty top drive - fixed speed)
33 inch lbs. of torque (DTT)
Class II (using timing belt on a top drive)
8 hours per day with no starts and stops (Service Factor is 1.5)
33 / 1.5 = 22 inch lbs. (SDTT)

Example:
Equivalent load = 300 (per conveyor technical data page)
300 / 6 = 50.0 (RCDT)
50 FPM (From page 37 - heavy duty bottom drive - fixed speed)
87 inch lbs. of torque (DTT)
Class II (using timing belt on a bottom drive)
16 hours per day with (10) starts and stops (Service Factor is 1.7)
87 / 1.7 = 51.1 inch lbs. (SDTT)

RCDT = 50.0
SDTT = 51.1
51.1 ≥ 50.0 (Gearmotor assembly will provide adequate torque)

Example:
Equivalent load = 100 (per conveyor technical data page)
100 / 6 = 17 (RCDT)
30 FPM (From page 33 - standard duty top drive - fixed speed)
33 inch lbs. of torque (DTT)
Class II (using timing belt on a top drive)
8 hours per day with no starts and stops (Service Factor is 1.5)
33 / 1.5 = 22 inch lbs. (SDTT)
RCDT = 17
SDTT = 22
20 ≥ 17 (Gearmotor assembly will provide adequate torque)
How to Use the Following Pages

The following pages contain information on types and locations of available QC drives, presented in a clear, concise manner. Simply follow the two-page spread from left to right, and note the steps listed here.

Step 1:
Choose mounting arrangement & location

Step 2:
If top or bottom drive mounting arrangement, choose timing belt or chain drive
Note: Each speed has two rows. The top row is timing belt driven, and the bottom row is chain driven

Step 3:
Choose speed

Step 4:
Run drive sizing calculations listed on Page 30

Step 5:
Choose voltage requirements

Step 6:
Put together two part numbers, drive mounting package and gearmotor, by following from left to right
This mounting arrangement allows for the drive to be mounted on either side of the conveyor with the motor inline with the drive pulley. Reference the drawings to the left for dimensional information. Reference the tables to the right for mounting package and gearmotor ordering information. The box immediately left shows the possible drive positions.

Dimension reflects use of MAA belt. See pages 20-21

For “A” dimension, see Motor Information table on next page
Fixed Speed

Sizing Information

<table>
<thead>
<tr>
<th>FPM</th>
<th>Torque (DTT) Inch Lbs</th>
<th>Prefix</th>
<th>Mounting</th>
<th>Position</th>
<th>Position</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>88</td>
<td>M1-</td>
<td>S or R</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
</tr>
<tr>
<td>10</td>
<td>76</td>
<td>M1-</td>
<td>S or R</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
</tr>
<tr>
<td>18</td>
<td>50</td>
<td>M1-</td>
<td>S or R</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
</tr>
<tr>
<td>21</td>
<td>41</td>
<td>M1-</td>
<td>S or R</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
</tr>
<tr>
<td>30</td>
<td>33</td>
<td>M1-</td>
<td>S or R</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
</tr>
<tr>
<td>43</td>
<td>23</td>
<td>M1-</td>
<td>S or R</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
</tr>
</tbody>
</table>

*See Drive Location Chart

Motor Part Number Example: M1-S1SE (Side Drive Mounting)

<table>
<thead>
<tr>
<th>Motor Part Number</th>
<th>Prefix</th>
<th>Voltage</th>
<th>Ratio</th>
<th>HP</th>
<th>Voltage</th>
<th>AMP</th>
<th>A*</th>
</tr>
</thead>
<tbody>
<tr>
<td>051-025</td>
<td>05</td>
<td>1-120</td>
<td></td>
<td>1/19</td>
<td>115v 1PH TENV</td>
<td>0.7</td>
<td>6.47</td>
</tr>
</tbody>
</table>

Variable Speed

Sizing Information

<table>
<thead>
<tr>
<th>FPM</th>
<th>Torque (DTT) Inch Lbs</th>
<th>Prefix</th>
<th>Mounting</th>
<th>Position</th>
<th>Position</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 - 5.0</td>
<td>73</td>
<td>M1-</td>
<td>S or R</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
</tr>
<tr>
<td>6 - 12</td>
<td>63</td>
<td>M1-</td>
<td>S or R</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
</tr>
<tr>
<td>10 - 20</td>
<td>42</td>
<td>M1-</td>
<td>S or R</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
</tr>
<tr>
<td>12 - 24</td>
<td>34</td>
<td>M1-</td>
<td>S or R</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
</tr>
<tr>
<td>17 - 34</td>
<td>27</td>
<td>M1-</td>
<td>S or R</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
</tr>
<tr>
<td>24.5 - 49</td>
<td>19</td>
<td>M1-</td>
<td>S or R</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
</tr>
</tbody>
</table>

*See Drive Location Chart

Motor Part Number Example: M1-R1SE (Top or Bottom Drive)

<table>
<thead>
<tr>
<th>Motor Part Number</th>
<th>Prefix</th>
<th>Voltage</th>
<th>Ratio</th>
<th>HP</th>
<th>Voltage</th>
<th>AMP</th>
<th>A*</th>
</tr>
</thead>
<tbody>
<tr>
<td>05V-018</td>
<td>05</td>
<td>V-120</td>
<td></td>
<td>1/19</td>
<td>115v 1PH TENV</td>
<td>1</td>
<td>7.16</td>
</tr>
</tbody>
</table>

Top or Bottom Drive

Sizing Information

<table>
<thead>
<tr>
<th>FPM</th>
<th>Torque (DTT) Inch Lbs</th>
<th>Prefix</th>
<th>Mounting</th>
<th>Position</th>
<th>Position</th>
<th>Suffix</th>
<th>Belt/Chain</th>
<th>Gme/Splt</th>
<th>Conv Splt</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>88</td>
<td>M1-</td>
<td>T or B</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
<td>5M CH</td>
<td>25 10</td>
<td>25 10</td>
</tr>
<tr>
<td>11</td>
<td>76</td>
<td>M1-</td>
<td>T or B</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
<td>5M CH</td>
<td>25 10</td>
<td>25 10</td>
</tr>
<tr>
<td>18</td>
<td>50</td>
<td>M1-</td>
<td>T or B</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
<td>5M CH</td>
<td>25 10</td>
<td>25 10</td>
</tr>
<tr>
<td>22</td>
<td>41</td>
<td>M1-</td>
<td>T or B</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
<td>5M CH</td>
<td>25 10</td>
<td>25 10</td>
</tr>
<tr>
<td>30</td>
<td>33</td>
<td>M1-</td>
<td>T or B</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
<td>5M CH</td>
<td>25 10</td>
<td>25 10</td>
</tr>
<tr>
<td>44</td>
<td>23</td>
<td>M1-</td>
<td>T or B</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
<td>5M CH</td>
<td>25 10</td>
<td>25 10</td>
</tr>
</tbody>
</table>

*See Drive Location Chart

Motor Part Number Example: M1-T1SE-5M2525 (Top Drive Mounting Pkg w/ Timing Belt)

<table>
<thead>
<tr>
<th>Motor Part Number</th>
<th>Prefix</th>
<th>Voltage</th>
<th>Ratio</th>
<th>HP</th>
<th>Voltage</th>
<th>AMP</th>
<th>A*</th>
</tr>
</thead>
<tbody>
<tr>
<td>051-025</td>
<td>05</td>
<td>1-120</td>
<td></td>
<td>1/19</td>
<td>115v 1PH TENV</td>
<td>0.7</td>
<td>6.47</td>
</tr>
</tbody>
</table>

Variable Speed

Sizing Information

<table>
<thead>
<tr>
<th>FPM</th>
<th>Torque (DTT) Inch Lbs</th>
<th>Prefix</th>
<th>Mounting</th>
<th>Position</th>
<th>Position</th>
<th>Suffix</th>
<th>Belt/Chain</th>
<th>Gme/Splt</th>
<th>Conv Splt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 - 5.0</td>
<td>73</td>
<td>M1-</td>
<td>T or B</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
<td>5M CH</td>
<td>25 10</td>
<td>25 10</td>
</tr>
<tr>
<td>6 - 12</td>
<td>63</td>
<td>M1-</td>
<td>T or B</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
<td>5M CH</td>
<td>25 10</td>
<td>25 10</td>
</tr>
<tr>
<td>10 - 20</td>
<td>42</td>
<td>M1-</td>
<td>T or B</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
<td>5M CH</td>
<td>25 10</td>
<td>25 10</td>
</tr>
<tr>
<td>12 - 24</td>
<td>34</td>
<td>M1-</td>
<td>T or B</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
<td>5M CH</td>
<td>25 10</td>
<td>25 10</td>
</tr>
<tr>
<td>17 - 34</td>
<td>27</td>
<td>M1-</td>
<td>T or B</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
<td>5M CH</td>
<td>25 10</td>
<td>25 10</td>
</tr>
<tr>
<td>24.5 - 49</td>
<td>19</td>
<td>M1-</td>
<td>T or B</td>
<td>1 or 3</td>
<td>1 or 3</td>
<td>SE</td>
<td>5M CH</td>
<td>25 10</td>
<td>25 10</td>
</tr>
</tbody>
</table>

*See Drive Location Chart

Motor Part Number Example: M1-T3SE-5M2525 (Top Drive Mounting Pkg w/ Timing Belt)

<table>
<thead>
<tr>
<th>Motor Part Number</th>
<th>Prefix</th>
<th>Voltage</th>
<th>Ratio</th>
<th>HP</th>
<th>Voltage</th>
<th>AMP</th>
<th>A*</th>
</tr>
</thead>
<tbody>
<tr>
<td>05V-018</td>
<td>05</td>
<td>V-120</td>
<td></td>
<td>1/19</td>
<td>115v 1PH TENV</td>
<td>1</td>
<td>7.16</td>
</tr>
</tbody>
</table>

Notes:

1. Speeds can be reduced to 1/10 of their stated speed and provides 88 inch lbs. of torque by using a decimal reducer (Part No. 125-0205-10a)
2. Fixed speed motors are UL, cUL, and CE approved, however, the variable speed motor is not
3. Torque values are based upon start-up torque

See Drive Accessory Page (Page 39) for standard duty cords, switches, and plugs
This arrangement allows for the drive to be mounted on either side of the conveyor with the motor inline with the drive pulley. Reference the drawings to the left for dimensional information. Reference the tables to the right for mounting package and gearmotor ordering information. The box immediately left shows the possible drive positions.

Drive Location

Front View

Top View

Remote Drive

This arrangement allows for the drive to be mounted away from the conveyor and on either side of the conveyor, with the motor inline with the drive pulley. Reference the drawings to the left for dimensional information. Reference the tables to the right for mounting package and gearmotor ordering information. The box immediately left shows the possible drive positions.

Drive Location

Front View

Top View

Top Drive

This arrangement allows for the drive to be mounted above the conveyor belt, on either side of the conveyor, and with the motor inline with the drive pulley. Reference the drawings to the left for dimensional information. Reference the tables to the right for mounting package and gearmotor ordering information. The box immediately left shows the possible drive positions.

Drive Location

Front View

Top View

Bottom Drive

This arrangement allows for the drive to be mounted below the conveyor belt, on either side of the conveyor, and with the motor inline with the drive pulley. Reference the drawings to the left for dimensional information. Reference the tables to the right for mounting package and gearmotor ordering information. The box immediately left shows the possible drive positions.

Drive Location

Front View

Top View

*Dimension reflects use of MAA belt. See pages 20-21.
Sizing Information

Mounting Part Number

Example: M1-S3SA

<table>
<thead>
<tr>
<th>FPM*</th>
<th>Torque In. Lbs.</th>
<th>14-144</th>
<th>See Chart Below</th>
</tr>
</thead>
</table>

Suffixes vary up to +/- 4 FPM

Mounting Part Number Example:
M1-S3SA
Top Drive Mounting Package with Chain

Motor Part Number

Example: 30A-015

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Voltage</th>
<th>Ratio</th>
<th>Vane</th>
<th>Max PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>A-</td>
<td>015</td>
<td>4</td>
<td>80</td>
</tr>
</tbody>
</table>

Motor Information

Motor Part No. Example:
30A-015
4 Vane Reversible Pneumatic Motor

Needle Valve
Part Number: 125-0034-VLV1
The QC Industries Needle Valve acts as a throttling device, and is sized to incrementally control the speed of the Standard Duty Pneumatic Drive.

Filter, Regulator, Lubricator
Part Number: 125-0034-FRL
The QC Industries Filter, Regulator, and Lubricator has been sized to handle the flow and pressure requirements of the Standard Duty Pneumatic Drive.

Top or Bottom Drive

Sizing Information

Example: M1-T1SA-5M2525

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Mounting</th>
<th>Position*</th>
<th>Suffix</th>
<th>Belt/Chain</th>
<th>GMtr. Sprkt</th>
<th>Conv Spkr</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-</td>
<td>T or B</td>
<td>1 or 3</td>
<td>SA-</td>
<td>5M</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CH</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

See Drive Location Chart

Mounting Part Number Example:
M1-T1SA-5M2525
(1) Top Drive Mounting Package with Chain

Motor Part No. Example:
30A-015
4 Vane Reversible Pneumatic Motor

Motor Information

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Voltage</th>
<th>Ratio</th>
<th>Vane</th>
<th>Max PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>A-</td>
<td>015</td>
<td>4</td>
<td>80</td>
</tr>
</tbody>
</table>

Top or Bottom Drive

Torque vs. Speed

- 80 PSI
- 60 PSI
- 40 PSI
- 20 PSI

Notes:
1. Motor comes standard with muffler and in-line filter.
2. Speed should be controlled on the exhaust of air to preserve maximum torque output and a stable speed control.
3. Max speed is 61 FPM @ 80 PSI.
4. Both chain and timing belt drives have the same torque rating.
Note: This arrangement allows for the drive to be mounted on either side of the conveyor with the motor perpendicular to the drive pulley. Reference the drawings to the left for dimensional information. Reference the tables to the right for mounting package and gearmotor ordering information. The box immediately left shows the possible drive positions.

Remote Drive

*For “A” and “B” dimensions, see table at bottom of page

Note: 56 frame gear motors extend below gear box mounting plate and may require shimming

Top Drive

*For “A” and “B” dimensions, see table at bottom of page

Bottom Drive

*For “A” and “B” dimensions, see table at bottom of page

Motor Dimension Chart

<table>
<thead>
<tr>
<th>Motor</th>
<th>161</th>
<th>163</th>
<th>16V</th>
<th>251</th>
<th>253</th>
<th>25V</th>
<th>331</th>
<th>333</th>
<th>33V</th>
<th>501</th>
<th>503</th>
<th>50V</th>
<th>503 ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>5.20</td>
<td>4.69</td>
<td>4.98</td>
<td>5.19</td>
<td>5.20</td>
<td>4.99</td>
<td>6.20</td>
<td>5.20</td>
<td>5.01</td>
<td>6.15</td>
<td>6.19</td>
<td>4.98</td>
<td>7.23</td>
</tr>
</tbody>
</table>

The motor can be rotated in 90° increments when attaching it to the gearbox. This allows the user flexibility when deciding where the motor capacitor and work box will be located.
Sizing Information

<table>
<thead>
<tr>
<th>FPM*</th>
<th>Torque (DTT) Inch Lbs</th>
<th>Prefix</th>
<th>Mounting</th>
<th>Position*</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>120</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>128</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>132</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>130</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>128</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>107</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>82</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
</tbody>
</table>

*Speeds vary up to +/- 4FPM.

Remote Drive

<table>
<thead>
<tr>
<th>FPM*</th>
<th>Torque (DTT) Inch Lbs</th>
<th>Prefix</th>
<th>Mounting</th>
<th>Position*</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>120</td>
<td>M1-</td>
<td>R</td>
<td>1G or 3J</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>128</td>
<td>M1-</td>
<td>R</td>
<td>1G or 3J</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>132</td>
<td>M1-</td>
<td>R</td>
<td>1G or 3J</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>130</td>
<td>M1-</td>
<td>R</td>
<td>1G or 3J</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>128</td>
<td>M1-</td>
<td>R</td>
<td>1G or 3J</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>107</td>
<td>M1-</td>
<td>R</td>
<td>1G or 3J</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>82</td>
<td>M1-</td>
<td>R</td>
<td>1G or 3J</td>
<td>0</td>
</tr>
</tbody>
</table>

*Speeds vary up to +/- 4FPM.

Top or Bottom Drive

<table>
<thead>
<tr>
<th>FPM*</th>
<th>Torque (DTT) Inch Lbs</th>
<th>Prefix</th>
<th>Mounting</th>
<th>Position*</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>95 (belt)</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>95 (belt)</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>95 (belt)</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>93 (belt)</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>69 (belt)</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>87 (belt)</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>84 (belt)</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>81 (belt)</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>100 (belt)</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>100 (belt)</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>68 (belt)</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>175</td>
<td>59 (belt)</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>51 (belt)</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
<tr>
<td>225</td>
<td>46 (belt)</td>
<td>M1-</td>
<td>T or B</td>
<td>1, 1G, 3J or 3G</td>
<td>0</td>
</tr>
</tbody>
</table>

*Speeds vary up to +/- 4FPM.

1. ALL above gearmotors are UL and CSA approved.
2. Torque values are based upon running torque.
3. Inverter duty variable frequency rated motors are available in 1/2 HP. Add an ID to the end of the motor part number for the 230/460VAC 3hp motors only.
4. Please note that all inverter duty motors have a non-removable foot mount on them.
125 Series Drive Accessories

Motor Controls

Standard DC Control

Note: It is the responsibility of the end user to properly wire this controller to the gearmotor

Specifications/Features:
- 115 V AC, 1 phase input, 90 V DC, 1/2 hp max output
- 230 V AC, 1 phase input, 180 V DC, 1 hp max output
- 30:1 speed range
- UL/ULc/CE
- NEMA 1 Enclosure
- Forward/Reverse switch, Run/Brake switch
- Min/Max & Accel/Decel settings

To Order:
Part Number:
- 125-0054-01 Standard NEMA 1DC Control
- 125-0149-09* Wiring: cords & plugs

*Includes 8' cord from control to AC plug and 8' cord from control to motor with male/female disconnects (wired).

Standard AC Control

Note: It is the responsibility of the end user to properly wire this controller to the gearmotor

Specifications/Features:
- 115/230 V AC, 1/3 phase, 50/60 hz input, 1 hp max output
- 10:1 speed range (when used with ID motor)
- UL/ULc/CE
- IP 20 Enclosure
- 3-digit LED display
- Forward/Reverse switch
- Run/Stop button, Accel/Decel buttons
- Carrier frequency selectable for quiet operation

To Order:
Part Number:
- 125-0054-5C-11-05 115V AC, 1 phase input, IP20
- 125-0054-5C-21-05 230V AC, 1 phase input, IP20
- 125-0054-5C-23-20 230 V AC, 3 phase input, IP20
- 125-0054-5C-43-10 460 V AC, 3 phase input, IP20

Washdown DC Control

Note: It is the responsibility of the end user to properly wire this controller to the gearmotor

Specifications/Features:
- 115 V AC, 1 phase input, 90 V DC, 1 hp max output
- 230 V AC, 1 phase input, 180 V DC, 2 hp max output
- 30:1 speed range
- UL/ULc/CE
- NEMA 4X Enclosure
- Speed adjustment potentiometer
- Forward/Off/Reverse switch
- Min/Max & Accel/Decel settings

To Order:
Part Number:
- 125-0054-37 NEMA 4X AC Control

This 4X washdown controller can be used in a wet or dusty environment.

Washdown AC Control

Note: It is the responsibility of the end user to properly wire this controller to the gearmotor

Specifications/Features:
- 115/230 V AC, 1 phase, 50/60 hz input, 1 hp max output
- 10:1 speed range (when used with ID motor)
- UL/ULc
- NEMA 4X Enclosure
- Speed adjustment potentiometer
- Run/Stop switch
- Carrier frequency selectable for quiet operation

To Order:
Part Number:
- 125-0054-38 NEMA 4X DC Control

This 4X washdown controller can be used in a wet or dusty environment.

Note: It is the responsibility of the end user to properly wire this controller to the gearmotor
The Motor Starter is an overload protection that also provides a means of using a Remote E-Stop for safety. The starter is equipped with an undervoltage trip to protect against autostarting after the overload condition has been corrected. Also includes short circuit protection.

Specifications/Features:
- 115 V AC, 1 phase, 60 hertz input, 1/2 hp max
- 230 V AC, 3 phase input, 1 1/2 hp max
- 460 V AC, 3 phase input, 1 1/2 hp max
- UL/CSA/CE
- Start/Stop buttons
- IP55 Enclosure

To Order:
- Part Number: 125-0054-38-115 115 V AC, 1ph w/enclosure
- 125-0054-38-230 230 V AC, 3 ph w/enclosure
- 125-0054-38-460 460 V AC, 3 ph w/enclosure

The E-Stop accessory is mounted directly to the Motor Starter enclosure, providing a means of stopping the motor for safety. It can be padlocked for servicing, and contains a start button for restarting the motor after the pushbutton has been released.

Specifications/Features:
- Turn to release
- UL/CSA/CE
- E-Stop can be locked out/includes start button
- IP55 Rated

Note: Mounts directly to motor starter enclosure

To Order:
- Part Number: ELECT-061 E-Stop Accessory for Motor Starter

The Remote E-Stop provides a means for locking out power to the motor for safety. It includes an IP65 enclosure and mounting bracket to allow the E-Stop to be mounted directly to the side of the conveyor frame.

Specifications/Features:
- Turn to release
- UL/CSA/CE
- IP65 Enclosure

Note: Includes mounting bracket to mount to conveyor frame

To Order:
- Part Number: ELECT-063-WBRKT E-Stop with enclosure

Optional Cords, Plugs, & Switches

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>125-0149-01</td>
<td>Fixed speed standard duty electric motor ON/OFF switch</td>
</tr>
<tr>
<td>125-0149-02</td>
<td>Fixed speed standard duty electric motor FORWARD/REVERSE switch</td>
</tr>
<tr>
<td>125-0149-03</td>
<td>Variable speed standard duty electric motor FORWARD/REVERSE switch</td>
</tr>
<tr>
<td>125-0149-04</td>
<td>Fixed speed standard duty electric motor 8’ cord and plug</td>
</tr>
<tr>
<td>125-0149-05</td>
<td>ON/OFF switch for 1 PH heavy duty motor</td>
</tr>
<tr>
<td>125-0149-06</td>
<td>FORWARD/REVERSE switch for 1 PH heavy duty motor</td>
</tr>
<tr>
<td>125-0149-07</td>
<td>8’ cord and plug for 1 PH heavy duty motor</td>
</tr>
<tr>
<td>125-0149-09</td>
<td>8’ cord and plug for 90VDC motor - see controller for details</td>
</tr>
</tbody>
</table>
The Double Universal Joint with bearing mount is used to couple a remote mounted motor with a conveyor drive shaft when there is not common shaft alignment. This assembly should be used with Drive End Mounts.

Note: Torque rating of universal joint at average angle of 15° (.375 offset) and 350 rpm is 125 inch lbs. Higher speeds and angle will reduce rating.

The Single Piece Flex Coupling is used to couple the remote mounted motor with the conveyor drive shaft. This coupling can also be used to couple between gang driven conveyors.

The Three Piece Flex Coupling is used to couple the remote mounted motor with the conveyor drive shaft. This coupling is used on all side drives.

Note: Use of the three piece flex coupling may require the 1/2" hex shaft retaining collar (Part No. 125-0078-026) to prevent separation. Please consult factory.

The Drive Extension Shaft can be used to gang drive multiple conveyors and/or for power take-off of remote drives.

The Drive Extension Shaft Support Block is used to support lengths of shaft not supported by the drive coupling or a conveyor.
Typical Gang Drive Examples

Bottom Drive with Two Flex Couplings

Note 1:
This typical gang drive application shows a bottom drive mounting arrangement. The couplings and drive extension shaft are shown on the opposing page. Please note that the conveyor to which the drive is attached has a “D” designator in the drive pulley portion of the part number.

Side Drive with Through Shaft & Drive End Mounts

Note 2:
This typical gang drive application shows a side drive mounting arrangement. The drive end mounts are shown on page 27, and drive extension shafts are shown on the opposing page. Please note that the conveyor to which the drive is nearest has an “H” designator in the drive pulley portion of the part number.

Remote Drive with Flex Couplings

Note 3:
This typical gang drive application shows a remote drive mounting arrangement. The couplings and drive extension shafts are shown on the opposing page. Please note that the conveyor to which the drive is nearest has a “D” designator in the drive pulley portion of the part number.

How to Order

The examples above help illustrate how to assemble part numbers for typical applications. The following shows the steps needed to correctly size a gang driven application:

Step One: Add up the equivalent load for each conveyor you plan to gang drive. (Using pages 10, 14, and/or 18)
Step Two: Size a drive based upon the total equivalent load from Step One
Step Three: Determine which type of drive arrangement you need: side, remote, top, or bottom (Using page 32, 34, or 36)
Step Four: Change the drive pulley digit of the conveyor part number to reflect which drive arrangement you are using. “D” for top or bottom drives and “H” for side or remote drives. Conveyor Part number example: 1ESBH04-060-ADQ-MAA - The “D” designates a dual output drive pulley to be used in a gang driven application using a top or bottom drive. The “H” designates a hex input pulley to be used in a gang driven application using a side or remote drive.
Step Five: Determine the couplings and drive extension shaft needed, using the above diagrams as a guide. This information can be located on the opposing page.
Step Six: Ensure that the couplings can handle the torque requirements of the system. Reference page 40

Please consult the factory if you have questions.
Motion Detection

Motion detection can be used in all applications where it is necessary to know the conveyor belt is running while other machines are operating. QC’s motion detection system monitors your conveyor and provides a “belt running” signal to your machine control system or PLC.

Motion Detection Retrofit Kit

- Includes:
 - (1) 4-pin two wire male connector
 - (1) 4-pin two wire female connector
 - (1) Mounting block and spring assembly
 - (1) Mounting hardware kit
 - (1) Template for mounting hole transfer
 - (1) Detectable tail assembly
 - (1) Proximity sensor

 Note: This kit can only be ordered for installation of motion detection into an existing conveyor in the field.

 Note: Holes to be drilled in the field by the customer.

Installed Motion Detection Kit

- Includes:
 - (1) 4-pin two wire male connector
 - (1) 4-pin two wire female connector
 - (1) Mounting block and spring assembly
 - (1) Mounting hardware kit
 - (1) Detectable tail assembly exchanged for the standard tail assembly
 - (1) Proximity sensor
 - (1) Installation of sensor kit into conveyor

 Note: This kit can only be ordered with the purchase of a new conveyor.

 Note: Please denote a “D” in the tail pulley portion of conveyor part number.

Electrical Specifications:
- Supply Voltage: 24 VDC
- Load Current: 200 mA, normally open
- Operating Temperature: -25°C to +70°C (-13°F to +158°F)

Features:
- Compact design
- Easy to retrofit into existing conveyors
- Magnetic proximity sensor allows for dependable operation in harsh operating environments
- Provides one pulse per tail pulley revolution

Drip Pans

- Compact design
- Easy to retrofit into existing conveyors
- Magnetic proximity sensor allows for dependable operation in harsh operating environments
- Provides one pulse per tail pulley revolution

To Order:
Fill in the last five digits of the part number with the width and length of the conveyor it is to be used on.
Part No. 125-0403-WW-LLL

Conveyor Width Part No.

<table>
<thead>
<tr>
<th>Width</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 in.</td>
<td>125-0335-02</td>
</tr>
<tr>
<td>3 in.</td>
<td>125-0335-03</td>
</tr>
<tr>
<td>4 in.</td>
<td>125-0335-04</td>
</tr>
<tr>
<td>6 in.</td>
<td>125-0335-06</td>
</tr>
<tr>
<td>8 in.</td>
<td>125-0335-08</td>
</tr>
<tr>
<td>10 in.</td>
<td>125-0335-10</td>
</tr>
<tr>
<td>12 in.</td>
<td>125-0335-12</td>
</tr>
<tr>
<td>18 in.</td>
<td>125-0335-18</td>
</tr>
<tr>
<td>24 in.</td>
<td>125-0335-24</td>
</tr>
</tbody>
</table>

Part No. 125-0403

- **PIN CONFIGURATION**
 - 1: BROWN (+)
 - 2: N/A
 - 3: BLUE (-)
 - 4: N/A
Automation Accessories

90° Transfer Plate

<table>
<thead>
<tr>
<th>Conveyor Width</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 in.</td>
<td>125-0230-02</td>
</tr>
<tr>
<td>3 in.</td>
<td>125-0230-03</td>
</tr>
<tr>
<td>4 in.</td>
<td>125-0230-04</td>
</tr>
<tr>
<td>6 in.</td>
<td>125-0230-06</td>
</tr>
<tr>
<td>8 in.</td>
<td>125-0230-08</td>
</tr>
<tr>
<td>10 in.</td>
<td>125-0230-10</td>
</tr>
<tr>
<td>12 in.</td>
<td>125-0230-12</td>
</tr>
<tr>
<td>18 in.</td>
<td>125-0230-18</td>
</tr>
<tr>
<td>24 in.</td>
<td>125-0230-24</td>
</tr>
</tbody>
</table>

Notes:
Transfer plates are not intended for use with high friction or cleated belts.
Discharge conveyor must be pushing.
Customer to drill screw holes to mount plate.

Inline Transfer Plate

<table>
<thead>
<tr>
<th>Conveyor Width</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 in.</td>
<td>125-0220-02</td>
</tr>
<tr>
<td>3 in.</td>
<td>125-0220-03</td>
</tr>
<tr>
<td>4 in.</td>
<td>125-0220-04</td>
</tr>
<tr>
<td>6 in.</td>
<td>125-0220-06</td>
</tr>
<tr>
<td>8 in.</td>
<td>125-0220-08</td>
</tr>
<tr>
<td>10 in.</td>
<td>125-0220-10</td>
</tr>
<tr>
<td>12 in.</td>
<td>125-0220-12</td>
</tr>
<tr>
<td>18 in.</td>
<td>125-0220-18</td>
</tr>
<tr>
<td>24 in.</td>
<td>125-0220-24</td>
</tr>
</tbody>
</table>

Note:
Transfer plates are not intended for use with high friction or cleated belts.

Pivot Mount Set

To Order:
Part No. 125-0172-00

Note:
The pivot mount attaches to the tail end of the conveyor and enables a pivot point from which other devices can lift the conveyor. Includes left and right hand mount.

Custom Rolling Nosebars

To Order:
Part No. 125-0250-000

Note:
The rolling nosebar can be used with a conveyor running less than 60 fpm and carrying less than 5 lbs. per inch of conveyor width.

Adjustable Diverters

To Order:
Part No. 125-0250-000

Note:
The adjustable diverter comes with a 5’ piece of UHMW rail and (2) mounting assemblies that the user can utilize to help orient the product around a 90° transfer.

Adjustable Stops

To Order:
Part No. 125-0232-WW

Notes:
Select an adjustable stop for 1” sides, 2” sides, or single tee slot (See pages 22 -24)
2. Using the chart below, fill in the part number using the nominal width of the conveyor for the last two digits of the part number

<table>
<thead>
<tr>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1” Sides</td>
</tr>
<tr>
<td>2” Sides</td>
</tr>
<tr>
<td>Single Tee Slot</td>
</tr>
</tbody>
</table>

Example: 125-0232-04
End Stop for a 4” wide conveyor that has 1” aluminum side rails with wear strip

To Order:
Part No. 125-0232-04